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WAVES OF FINITE AMPLITUDE IN A HOT PLASMA
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A study is made of a plane shock wave of arbitrary strength propagat-
ing in a hot rarefied plasma across the magnetic field. The question
of the propagation of nonstationary waves of finite but small ampli-
tude under these conditions is examined,

Fairly detailed studies have been made of waves of finite amplitude

in a cold rarefied plasma. The profile of such waves is formed as the
resutt of nonlinear and dispersion effects, the dispersion effects being
caused by electron inertia and plasma anisotropy. If the gas-kinetic
pressure of the plasma is taken into account, then dispersion effects
appear which are associated with the fact that the Larmor radius of
the jons is finite. Stationary waves of small but finite amplitude propa-
gating across the magnetic field in a hot plasma (when the gas-kinetic
pressure p is comparable with the magnetic pressure H2/8r) have been -
treated in [1, 2]. In [1] an isolated rarefaction wave was found in a
hot plasma, instead of the compression wave characteristic of a cold
plasma, and a qualitative picture of the shock wave structure was giv-
en, In[2] a study was made of a small-amplitude shock wave with the
finite size of the ion Larmor radins taken into account, The present
paper investigates the structure of shock waves of arbitrary strength
which propagate across the magnetic field in a fairly hot rarefied plas-
ma, and also examines nonstationary waves of finite but small ampli-
tude excited in a plasma by a "magnetic piston" acting over a limited
time interval.

NOTATION -

p—gas-kinetic pressure; H-magnetic field; u, v—macroscopic ve-
locities along the x and y axes; p—density; mg(mj)—mass of electron
’ (ion); o—plasma conductivity; Qg—ion-cyclotron frequency; Va—
Alfvén velocity; c=velocity of light; y—adiabatic exponent; V—
specific velume; wye{wpi)—electron (lon) plasma frequency; sy—
velocity of sound.

1. Basic equations. The initial system of equations
consists of the equations of motion of the electron and
ion components of the plasma, the equations of con-
tinuity and Maxwell's equations., The plasma is as-
sumed to be quasi-neutral. The gas-kinetic pressure
is infroduced into the equations of motion, and this
has a tensor character due to the fact that the ion dis-
tribution does not have spherical symmetry. We shall
take the motion to be one~dimensional, i.e., all quan-
_tities depend on the x coordinate and time t only. The
magnetic field is directed along the z axis. We shall
write the basic system of equations in the form of laws
of conservation of mass, momentum (along the x and
y axes), energy and magnetic flux
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Here p is the density of the plasma, u is the x com-~
ponent of the macroscopic velocity, v is the y compo-
nent of velocity, p is the pressure, o is the plasma
conductivity which we will take as constant.

If the plasma conductivity is large, then the equa-
tions of state of the electron and ion gases will not be
much different from the adiabatic equations with an
effective adiabatic exponent y =2 (since we are con~

- sidering motion across the magnetic field), Thus we

may set p; = ap with a sufficient degree of accuracy,
where o = const is the ratio of the ion gas pressure
to the total plasma pressure.

To find the wave dispersion law we linearize the
system of equations (1.1) as usual and seek a solution
in the form of plane waves, as a result of which we
obtain
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where p; and p; are the unperturbed pressure and den-
sity of the plasma, respectively, and s; is the velocity
of sound.

If the gas-kinetic ion pressure is small enough com-
pared with the magnetic pressure, the first term in
the brackets in expression (1.2) predominates, result-
ing in negative dispersion (the phase velocity of small
perturbations decreases as the wavelength decreases);
in this case, as is well known, the characteristic lin-
ear dimension of the stationary compression waves is
of the order of ¢/wye. However, if the gas-kinetic
pressure of the ions is high enough (hot plasma), then
positive dispersion occurs (the phase velocity of small
oscillations increases as the wavelength decreases);
in this case the characteristic dimension of stationary
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rarefaction waves is of the order
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as is clear from expression (2.2).

Thus, in a hot plasma dispersion effects are basi-
cally caused by the finite size of the Larmor radius
and not by the electron inertia.

We reduce the system of equations (1.1) to dimen-
sionless form;

a 1 0 u
wvtev=0

ap 8

0 u [ u? oh \}
e = R b i) =0,

o v 8 (uv ap duy
79?“/_"{”72(7“F 2k ag> 0,

P T T B (R +

o lulp+ ELE e ey (2 —

S NP O YR .
e o BT B
ah+ag(uh)-aE(;Jru%)(;/gg):%%%_’
=T =g VEe

B ’“VAC%Z‘ (1.3

Here the velocity and pressure are normalized by
the Alfvén velocity VA and the quantity pyVA2, respec-
tively, and these quantities are represented by the
same symbols as before.

2. Stationary motions. We shall consider stationary
plasma motions on the basis of the system of equa-
tions (1.3), and in order to do this we pass as usual
to a coordinate system attached to a wave moving with
constant velocity. In this coordinate system the plasma
moves in the positive direction of the x axis. For sta-
tionary motions we have the equations
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Here j is the mass flux.

For convenience, in the analysis which follows we
shall transform the system of equations (2.1) to equa-
tions solved with respect to their first derivatives in
order to obtain the direction field. We shall take the
plasma to be fairly hot 8np / H? > m. / m;), which will
allow us to neglect the electron inertia. Then the sys-
tem of equations {2.1) assumes the form

J = const, Co=2p;+oj 4+ 1.
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The equilibrium states 1(ahead of the wave front)
and 2 (behind the wave front) are determined by the
singular points of Egs. (2.2). Setting the right sides
of these equations equal to zero, we obtain:

in the unperturbed state (ahead of the front),

?):U‘l.-::o, V:VI 21, h:hl :1, (2.4)
in the perturbed state (behind the front),
V== Uy :O, h:h2 :Vzbl,

V=v,= 20tk R @.5)

it<1+ 2py, then V3> 1, and no wave joining the
two different states exists (such a wave would be a rar-
efaction wave). In this case the steady-state solution
is the isolated wave found in [i], which unites two
identical states. We note that in [1] the basic equation
describing the stationary wave is given for the case
y # 2, although y = 2 for the motions of a collisionless
plasma across the magnetic field, and so we can not
pass directly from the results of paper [1] to the case
which interests us. For small amplitudes it is not dif-
ficult to obtain
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where w is the velocity of the isolated wave. The iso~
lated wave is a rarefaction wave and its velocity is
less than the velocity of sound. If j2 > 1 + 2p, (the
wave velocity is greater than the velocity of sound),
then V, < 1, and a shock wave occurs which joins two
progressive plasma fluxes having different parameter
values and propagates without change of profile at a
certain constant velocity. In what follows we shall
pay particular attention to the shock wave structure,
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i.e., to the case j > 1 + 2py.

We shall investigate the singular points of the sys-
tem of equations (2.2), To do this we linearize Egs.
(2.2) close to their singular points, taking the depar-
ture of all quantities from their values in (2.4), (2.5)
to be small, i.e., we assume

V=Vi(l +9), h =h,s (1 4+,

where ¢, ¢ <€ 1. Retaining quantities of the first order
of smallness, we obtain
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Assuming a dependence ¢, ¥, v ~ exp (u&), we obtain
the characteristic equation
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The plasma conductivity is taken to be fairly large,
so we can seek the roots of Eq. (2.10) in the form of
a series in powers of n, i.e.,

wo=p® oot L (2.11)

Setting (2.11) in (2.10), we find the roots of the
characteristic equation
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For the perturbed state the roots of the character-
istic equation are real and different and two of them
have different signs; thus the singular point corre-
sponding to the perturbed state is a generalized sad-
dle point (see [3]), and the integral curve goes into
the singular point V=V, h=h,, v =0 at sufficiently
large values of {. For the unperturbed state the roots
of (2.12) are equal to
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The real parts of the roots differ from zero and
have the same sign. Thus for negative ¢ the singular
point V=h=1, v =0, corresponding to the unper-
turbed plasma state ahead of the shock wave, is a
generalized node point, and the integral curves ap-
proach the singular point under consideration asymp-
totically, ™wisting" around it.
If we pass to the case of an ideal plasma (o = o,
w = 0), then the roots of the characteristic equation

for the unperturbed state are purely imaginary:
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It follows from the theory of differential equations
[3] that a singular point may, in the presence of imag-
inary roots, be both a:center {the integral curves are
closed curves which circle around the singular point
without passing through it), and also a focus (the integral
curves "twist" around the singular point, approaching
it asymptotically). To determine what sort of singular
point we have in this case, we must take into account
terms of the next order of smallness, which we re-
jected in obtaining the system (2.8). We may then write °
the necessary equations (for an ideal plasma) in the
form
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where the function f contains terms of the order of

v% ¢, ..., and v2. Equations (2.15) are symmetrical
relative to the ¢ axis (or V), i.e., they are invariant
with respect to the transformation £ — —¢, v — —v.
Thus, in accordance with Poincaré's theorem [3], the
singular point V=1, (¢ =0), v =0, corresponding to
the unperturbed state of an ideal plasma, is a center.
Thus it follows that in the case of a plasma with in-
finite conductivity the integral curve leaving the singu-
lar point corresponding to the perturbed state never
reaches the singular point corresponding to the unper-
turbed state. Thus in an ideal plasma there is an in-
finite train of undamped periodic waves; naturally
such a structure cannot be called a shock wave, as it
was in [2].

If ¢ # o, (= 0), then the amplitude of the periodic
waves will be damped as they move towards the un-
perturbed plasma (for &£ — —). Such a structure is a
shock wave joining two different states, while the
shock wave region (more exactly, its leading edge)
has an oscillatory structure, so that the shock wave
in a hot plasma bears a qualitative resemblance to the
shoek wave in a collisionless cold plasma, propagat-
ing at an angle to the magnetic field, as was noted in
[1].

We shall consider the structure of the shock wave
close to the equilibrium states V =4 =1, » =0 and
V =V, h =V, v =0, linearizing and using the sys-
tem of equations (2.8). Close to the unperturbed state
the shock wave profile starts from small oscillations
whose amplitude gradually increases. For this part
of the profile (for £ < 0) we may write
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Here 6 is. the growth increment of the amplitude os-
cillations, A is the wavelength of the oscillations,
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Thus it is clear that when the unperturbed pressure
is increased, significant damping appears over a great-
er length, and the linear dimension of the oscillations
increases, We note that the magnitude of the damping
is determined by the conductivity and pressure alone,
and does not depend on the velocity of the shock wave,
while the dimension of the oscillations depends sig-
nificantly on the shock wave velocity, being inversely
proportional to this velocity for j2 > 1 L 2p,- Close to
the equilibrium perturbed state (for £ > 0) the shock
wave profile is described by the formulas

V(&) = Va {1 -+ C (1 — xpuhy) 45},
h(E) = ha (1 — Cer)
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Here C > 0 is an arbitrary constant, A, is deter-
mined by expression (2.9), and u by expression {2.12)
with a minus sign in front of the first term.

The complete structure of a shock wave of arbi-
trary strength may be found by solving the system of
equations (2.2). This system was solved numerically,
values of the specific volume V, the magnetic field
h and the transverse velocity v, calculated from for-
mulag (2.17) for a certain fairly large positive £ = §;
being chosen as the initial conditions. Thus system
(2.2) was solved from a point £, close to the equi-
librium perturbed state, to a point £ = £yn9%, Where
the amplitudes of the required functions approached
sufficiently close to the values corresponding to the
unperturbed equilibrium state. By way of example,
the profile of a shock wave is given in the figure for
the following values of the parameters p; = 0.4, j=
=2, a = 0,5, In this case the total length of the shock
transition region is roughly 10 ¢/wgi. As the unper-
turbed ion pressure increases, this region is extend-
ed, and the linear dimension of the oscillations in~-
creases,

3. Nonstationary waves, We shall now consider non-
stationary waves of finite but small amplitude, propa-
gating across the magnetic field in a hot ideal plasma,
For weak waves, assuming V =1 +¢, 2 =1 +¢ (9,
P <€ 1) and retaining in Egs, (1.3) terms up to and
including those of the second order of smallness, in
deviations from the unperturbed values, just as in [4]
for waves in a cold plasma, we cobtain the equation
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If we pass to the case of a cold plasma (p, ~ 0},
then s — 1 and Eq. (3.1) coincides with Eq. (2.34)
of {4] with an accuracy to the symbols involved., After
the change of variables
()"
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Eq. (3.1) reduces to the form
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A solution of this equatmn wasg found in [4], giving
the asymptotic behavior of waves of finite buf small
amplitude excited by a "magnetic piston" acting on the
plasma~vacuum boundary in the course of a limited
time interval, The same solution also holds for waves
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in a hot plasma. If we neglect electron inertia, then
formulas obtained in [4] for waves propagating in a
cold plasma at an angle 6 to the magnetic field also
apply to the case under consideration, while the quan-
tity (¢ / was) Cnap, / H2) plays the part of characteristic
linear dimension instead of ¢0 / wy;.

In conclusion the author thanks R. Z. Sagdeev and
N. N. Yanenko for discussing the paper, and alse R, N,
Makarov for helping with the numerical computations.
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